
 
Internationally Correlated Jumps 

 
by 
 
 

Kuntara Pukthuanthong and Richard Roll 
 

January 31, 2011 
 

ABSTRACT 
 

Stock returns are characterized by extreme observations, jumps that would not occur under the 
smooth variation typical of a Gaussian process.  We find that jumps are prevalent in most 
countries.  This has been noticed before in some countries, but there has been little investigation 
of whether the jumps are internationally correlated.  Their possible inter-correlation is important 
for investors because international diversification is less effective when jumps are frequent, 
unpredictable and strongly correlated.  Government fiscal and monetary authorities are also 
interested in jump correlations, which have implications for international policy coordination.  
We investigate using daily returns on broad equity indexes from 82 countries and for several 
competing statistical measures of jumps.  Various jump measures are not in complete agreement 
but a general pattern emerges.  Jumps are internationally correlated but not as much as returns.  
Although the smooth variation in returns is driven strongly by systematic global factors, jumps 
are more idiosyncratic. 
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1. Introduction. 

 

Stock returns exhibit jumps relative to the rather smooth variation typical of a Gaussian 

distribution.1  Jumps might arise for a number of different reasons; to name a few: sudden 

changes in the parameters of the conditional return distribution, extreme events such as political 

upheavals in a particular country, shocks to some important factor such as energy prices, global 

perturbation of recessions.   

The ubiquity of jumps has important implications for investors, who must rely on 

diversification for risk control.  If jumps are idiosyncratic to particular firms or even countries, 

they might be only a second-order concern.  But if jumps are broadly systematic, unpredictable, 

and highly correlated, diversification provides scant solace for even the best-diversified 

portfolio.  Eraker et al. (2003) find that the jumps command larger risk premiums than 

continuous returns. Das and Uppal (2004) examine the portfolio choice problem of an 

international investor when returns are categorized by jumps, leading to systemic risks. Using 

monthly return data for a few developed markets, they measure diversification benefits and the 

home bias. They do not consider a large number of markets and do not apply the jump 

technology in this paper.  Asgharian and Bengtsson (2006) find significant jumps in large 

markets that lead to jumps in other markets. They conclude that markets in the same region and 

with similar industry structures tend to experience jump contagion. Jumps might be more 

prominent in emerging market returns where skewness and kurtosis are widely documented 

(Bekaert, et al. (1998a, b). 

Jumps that affect broad markets are also headaches for policy makers such as finance 

ministers and central bankers.  This is all the more true if jumps are significantly correlated 

internationally, for policy makers will then find it necessary, albeit difficult, to coordinate their 

reactions across countries.   

Using various measures of jumps and data for 82 countries over several decades, we 

present evidence about the international co-movement of jumps.  The general finding is that 

jumps are correlated across countries but they are less correlated than returns.  Jumps are more 

idiosyncratic except for a few pairs of countries.   Different measures of jumps are not in 

absolute agreement, so common prescriptions for investors and policy makers would be 

                                                 
1 See, inter alia, Chernov, et al. (2003), Eraker, et al. (2003), and Huang and Tauchen (2005). 
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premature.  The measures generally agree, however, that jumps are less systematic than the 

smooth (non-jump) component of country price indexes.   

Little has been previously documented about the international nature of jumps.  To this 

end, we provide a comparative summary statistics for various jump measures and countries.  We 

also document calendar periods that had the most influence on jump correlations and compare 

them with the most influential periods for return correlations.  This provides an intuitive 

depiction of the frequency and importance of jumps. 

 

2. Jump Measures. 

Several different statistical measures of jumps have been proposed in previous literature.  

Although we do not pretend to study all such measures ever advanced, we hope to display the 

similarities and differences among some of the most prominent ones.  This section presents some 

measures, provides their explicit form, and discusses their intuition, potential strengths and 

weaknesses. 

In calculating these measures, we have undoubtedly taken some liberties with respect to 

the intentions of the originators.  Scholars seem to focus exclusively on very high frequency data 

because asset prices are supposed to evolve in continuous time and jumps are envisioned as 

instantaneous discontinuities.  The continuous smooth variation of price (or log price) and the 

instantaneous nature of jumps are taken to be literal features of reality.  Hence, for a jump to be 

correlated across assets, it must happen at precisely the same instant.  In real markets, this would 

undoubtedly be an event with vanishing probability.   

It is less clear that non-mathematically inclined investors care all that much about 

whether jumps occur in two assets at the precise same instant.  So long as jumps occur within 

whatever happens to be the investment review period, there are important implications for 

diversification.  A few professional investment organizations monitor markets more or less 

continually, but the vast majority are less attentive; monthly rebalancing seems to be the norm 

except among hedge funds and investment banks.  Consequently, we think it is acceptable and 

even correct to think of jumps as being correlated across assets so long as they occur within the 

same finite time interval.  Thus, the main liberty we take henceforth is to apply tests that were 

originally developed for continuous time to measurable calendar periods.  
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With discretely sampled returns, tests for jumps are effectively tests for the presence of 

unusually large returns (in absolute value).  It remains to be seen whether jump tests have 

adequate power when the smooth variation in returns follows a leptokurtic distribution. 

 
2.1. Barndorff-Nielsen and Shephard. 

 

 Barndorff-Nielson and Shephard (2006), hereafter BNS, develop a test statistic based on 

comparing bipower variation with squared variation.  To understand their test, consider the 

following notation (that we will adopt throughout the paper.) 

t, subscript for day  
Tk, the number of days in subperiod k 
K, the total number of available subperiods 
Ri,t,k, the return (log price relative including dividends, if any)  

for asset i on day t in subperiod k 
 
 The BNS bipower and squared variations are defined as follows: 
 

Bi,k, bipower variation,  
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BNS propose two variants of the quadratic versus bipower variation measure, a 

difference and a ratio.  If the non-jump part of the process has constant drift and volatility, they 

show that (π/2)Bi,k is asymptotically equal to the non-jump squared variation.  Consequently, a 

test for the null hypothesis of no jumps can be based on (π/2)Bi,k - Si,k, or (π/2)Bi,k/Si,k -1.  Under 

the null hypothesis, the standard deviations of this difference and ratio depend on the “quarticity” 

of the process, which they show can be estimated by  
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are both asymptotically unit normal. 

These statistics have intuitive appeal because the squared variation (Si,k) should be 

relatively small if there is smooth variation, as with the normal distribution.  On the other hand, 

if the price jumps on some days, those jumps are magnified by squaring and the statistics above 

should be small.  Small values of G and H relative to the unit normal reject the null hypothesis of 

no jumps. 

From our perspective, these statistics also have the benefit that they can be computed 

sequentially over calendar periods of various lengths.2  For example, beginning with daily 

observations, they can be computed monthly or semiannually for each asset.  Subsequently, the 

resulting monthly or semiannual statistics can be correlated across assets to detect whether jumps 

are related.  When the assets are broad country indexes, this provides the opportunity to test for 

internationally correlated jumps.  For example, to check whether countries j and i exhibit 

correlated jumps, one can calculate the correlation over k = 1,…,K between Gi,k and Gj,k.   

In previous papers, Huang and Tauchen (2005) and Andersen, Bollerslev, and Diebold 

(2007) adopt the BNS method and develop a Z statistic for jumps using tri-power quarticity.  The 

latter paper also develops a “staggered” version of bi-power variation to tackle microstructure 

noise that induces autocorrelation in the high-frequency returns.  Zhang, Zhou, and Zhu (2009) 

use the BNS method to identify jump risk of individual firms from high-frequency equity prices 

in order to explain credit default swap premiums.   

 

2.2.  Lee and Mykland. 

 Like BNS, Lee and Mykland (2008), (hereafter LM), base their test on bipower variation, 

but it is employed differently.  Bipower variation is used as an estimate of the instantaneous 

variance of the continuous (non-jump) component of prices.  LM recommend its computation 

                                                 
2 There is a caveat.  BNS assume that the non-jump part of the process has constant mean and volatility, which rules 
out phenomena such as reductions in volatility with increasing prices, and vice versa.  This should be only a minor 
annoyance, though, when the calendar period is fairly short. 
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with data preceding a particular return observation being tested for a jump and the resulting test 

statistic is L = ܴ௜,௧ାଵ,௞/ඥܤ௜,௞ .  Under the null hypothesis of no jump at t+1, LM show that 

 ඥ2/π is equal to aܮ ,ඥ2/π converges to a unit normal.3  In addition, if there is a jump at t+1ܮ

unit normal plus the jump scaled by the standard deviation of the continuous portion of the 

process. 

LM stress that high-frequency data minimizes the likelihood that a jump will be 

misclassified.  A test might fail to detect an actual jump at t+1 or it might spuriously “detect” one 

at t+1 even though it has not occurred.  Over a sequence of periods, tests might also fail to detect 

any jumps even when one or more have occurred or they may falsely indicate that one or more 

have occurred.  LM provide explicit expressions for the probabilities of such misclassifications. 

Unfortunately, we do not possess international stock index data at frequencies higher than 

daily, so we will have to live with possible misclassifications.  But since our purpose is mainly to 

find evidence about the international correlation of jumps rather than the unambiguous 

identification of a jump at a particular time, occasional misclassification is less of an issue.  We 

also finesse the problem to some extent by using a non-parametric enumeration of the test 

statistic. 

Since the LM test statistic has the return in the numerator, it would not be appropriate to 

simply correlate it across countries.  The resulting statistic would be polluted by the normal non-

jump correlation of returns.  Instead, we first identify periods when the statistic is significantly 

non-normal, thus indicating a likely jump.  Using a simple contingency table test, we then 

ascertain whether these periods are related across each pair of countries. 

 

2.3. Jiang and Oomen. 

Jiang and Oomen (2008) (hereafter JO) devise a test inspired by the variance swap, a 

contract whose payoff depends on the realized squared returns of an asset at a particular 

frequency and over a specified horizon.  They cite Neuberger (1994) for the continuous 

replication strategy using a “log contract.”  This leads to the idea of swap-based variation, 

defined during period k with our usual notation as  

                                                 
3 For short periods, the mean return is negligible and is ignored in the simplest version of the LM test. 
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where the new superscripts “ar” and “ln” denote, respectively, the arithmetic return (Pt/Pt-1-1) 

and the log return ln(Pt/Pt-1) with Pt as the price (or index value) at time t.  The squared variation, 

already defined in section 2.1 when introducing the BNS statistic, is compared with the swap 

variation in several proposed test statistics based on SWi,k – Si,k, or ln(SWi,k) – ln(Si,k), or a ratio 

test based on 1 – Si,k/SWi,k.4 

JO argue that these statistics are more sensitive to jumps than the BNS and LM statistics 

described in sections 2.1 and 2.2 because they exploit the influence of jumps on the third and 

higher order moments rather than exclusively on the second moment.  JO provide simulations 

that seem to demonstrate that their statistic performs comparatively well. 

Their theorem 2.1, p. 354, states that any of the proposed test statistics are asymptotically 

normal with mean zero under the null hypothesis of no jumps during k.  The variances of the 

tests are unknown but can by estimated by multi-power variations that are consistent and robust 

to jumps during the estimation period. 

For our purpose of correlating jumps across international markets, we do not even need to 

estimate the variances of the JO tests provided that the variance is constant over time, (though 

different across countries.)  Also, to save space, we shall use just the second of JO’s three 

proposed statistics, involving logs of SW and S, simply on the grounds that logs attenuate 

outliers.       

 

2.4.  Jacod and Todorov.   

The tests devised by Jacod and Todorov (2009), hereafter JT, seem to perfectly fit our 

purpose here because they are explicitly intended to detect the common arrival of jumps in two 

time series.  JT actually develop two statistics, one for the null hypothesis that jumps arrive at the 

same instant in both time series (“joint” jumps) and another for the null hypothesis that jumps 

arrive in both time series but not at the same instant (“disjoint” jumps.)   

Within a finite subperiod k, the first JT test asks whether Ri,t,k and Rj,t,k (i ≠ j) both 

experience a jump on the same date t, for at least one t ∈ k.  Given a pair of countries, one can 

                                                 
4 Because JO intend their estimator for very high frequency data, the means are ignored.  De-meaned data can be 
used for lower frequency data. 
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compute the first JT test for a sequence of subperiods, k = 1,...,K, and tabulate the frequency of 

common jumps.  This provides a measure of jump co-movement frequency.  One can also use 

the second test to measure the arrival frequency of disjoint jumps that arrive on different dates 

but both within the same subperiod k. 

JT apply their tests to the DM/$ and ¥/$ exchange rates sampled at five-minute intervals 

within the 24-hour trading day, so they can be confident that two observations occur at almost 

the same moment, even though one transaction might take place in Tokyo and the other in 

Frankfurt.   

From a practical standpoint, our international stock index data are only observed daily 

and, worse, during local trading hours.  Unless two markets are open at the same time, there is a 

problem of synchronicity.  In this case, if a common jump hits global stock markets late on a 

given calendar day t, it will affect the North and South American markets on t but will show up 

in Asia and Europe only on day t+1.  Blindly applying the JT tests to such events would 

incorrectly reject the null hypothesis of common jumps between American and other markets 

and favor the null hypothesis of disjoint jumps.  The common jump test would not fail if the 

jump arrives early on a calendar day, but it would obviously be weakened overall.  The problem 

of non-synchronicity is inconsequential in this study because we aggregate daily returns to 

longer periods of at least a month and sometimes a half-year. 

There is no apparent solution if we stick to daily data.  We might garner some insight 

about the extent of the problem by comparing the results for pairs of countries whose markets are 

open roughly at the same time with country pairs having very different trading hours, but this 

faces another difficulty in that geographic neighbors might simply be subject to more common 

jumps.5 

A possible resolution is to use two-day returns rather than daily returns.  Since a jump is 

presumably a large event, it will be a significant component of any two-day return.  So a jump 

arriving after Asian and European market have closed on day t will show up in their returns on 

day t+1, but a return spanning the period t and t+1 will contain the jump for all markets.  

However, this would induce serial dependence because successive two-day turns have one over-

lapping day. 

                                                 
5 Indeed, we find some empirical evidence later that this is true. 
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Moreover, such an approach might not be that relevant to most investors.  Instead, a 

longer observation interval, such as monthly, could be chosen and the JT tests applied to a 

sequence of months.  (The tests statistics can be calculated for intervals of any feasible length.)  

One null hypothesis would then be that no joint jump occurs in two countries occur on the same 

day within a month.  The second null hypothesis would be that no jump occurs in both countries 

on different days within a month.  Rejecting both nulls is investment relevant and will be 

adopted as our empirical work below.   

The JT tests require that at least one jump occurs in both countries i and j in at least one 

interval k = 1,...,K.  So, the first step in implementing their procedure is to throw out countries 

that never experience a jump during the sample.  The BNS statistics could be used for this 

purpose.  In other words, one could first compute the Gi,k and Gj,k (or Hi,k and Hj,k) according to 

the expressions in section 2.1 above, check whether the means of both G’s (or both H’s) fall 

below some pre-specified threshold, such as the .01 fractile of the unit normal, and retain for the 

JT test only those pairs of countries for which the threshold is breached.  For monthly periods, 

this approach seems unnecessary because failure to reject both the “joint” and the “disjoint” 

jump null hypotheses is tantamount to accepting the hypothesis that the month contains no jump 

of any kind. 

For month k, the monthly return is simply the sum of daily (log) returns, which we now 

denote as ,
1

,,, ∑
=

=
kT

t
ktiki RR for country i and month k which contains Tk daily returns.  Inserting our 

return notation in JT’s functional representation, we first define a functional sum as 
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for integer λ ≥ 1, where [ . ] denotes the integer part or the argument and the function f(x) takes 

on two forms: a cross-product, fi,j = (xixj)2 and a quartic, gi = xi
4.  For λ = 1, V(f,1) is simply the 

sum of the functions of individual monthly returns.  For λ > 1, JT recommend the choices of λ = 

2 or λ = 3; we will adopt the former and retain it throughout because this maximizes the number 

of terms in the sum, i.e., in [K/λ].  Consequently, in our application of the JT tests, the second 

sum in V(f,2) will involve bi-monthly returns. 

The JT test statistic for simultaneous (“joint”) jumps is given by 
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JT derive asymptotic properties for both statistics.  When there are joint jumps, Φ(J) 

converges to a Gaussian with mean 1.0 and variance given by their equation 4.1, (p. 1800.)   

When there are only joint jumps, Φ(D) also converges to 1.0, and it generally converges to a 

positive value when there are both joint and disjoint jumps.  When there are uniquely disjoint 

jumps, Φ(D) converges to zero and Φ(J) converges to 2.0.  If there are no jumps at all, Φ(D) should 

also converge to zero, so a test of Φ(D) against a null hypothesis of zero (and perhaps Φ(J) against 

a null hypothesis of 2.0) should be rejected when jumps are joint and thus not idiosyncratic.   

 

2.5. Other tests we do not employ. 

While JT tests for cojumps in a pair of returns based on higher order power variation, 

Gobbi and Mancini (2006, 2008) propose a strategy to separate the covariation between the 

diffusive and jump components in a pair of returns.  Using a related method, Bollerslev, Law, 

and Tauchen (2008) do not test for cojumps between a particular pair of returns, but rather in the 

cojumps embodied in a large ensemble of returns. 

Aït-Sahalia and Jacod (2009) and Tauchen and Zhou (2010) propose nonparametric tests 

for presence of price jumps based on high-frequency data.  Also, more recently, Aït-Sahalia, 

Cacho-Diaz, and Laeven (2010) model asset return dynamics with a drift component, a volatility 

component and mutually exciting jumps known as Hawkes processes.  They use this approach to 

capture adverse mutual shocks to stock markets, with a jump in one region of the world 

propagating a different jump in another region of the world.   

Of course, this paper would be unacceptably lengthy if every existing jump test were 

thoroughly examined.  Hence, we simply selected four tests that seem promising and are 

relatively easy to implement.  We also develop and implement a set of simulations that help 

assess the relative merits of these tests and could be used in the same way to examine any of the 
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tests just mentioned above.  All of the above tests above probably deserve to be studied further in 

future research. 

 

3. Data and Summary Statistics for Returns. 

3.1.  Data. 

Daily data are extracted for 82 countries from DataStream, a division of Thomson 

Financial.  The data consist of broad country indexes converted into a common currency (the US 

dollar).  The appendix lists the countries, identifies the indexes, reports the time span of daily 

data availability, and provides the DataStream mnemonic indicator (which could help in any 

replication.)  If the mnemonic contains the symbol “RI”, the index includes reinvested dividends; 

otherwise, the index an average daily price. 

Daily data availability extends back to the 1960s for a few countries but most joined the 

database at a later time.  The latest available date, when all the data were downloaded, is October 

26, 2009 for all countries except Zimbabwe, (which closed its stock market after October 2006.) 

Daily returns are calculated as log index relatives from valid index observations.  An 

index observation is not used if it exactly matches the previous reported day’s index.  When an 

index is not available for a given trading day, DataStream inserts the previous day’s value.  This 

happens whenever a trading day is a holiday in a country and also, particularly for smaller 

countries, when the market is closed or the data are simply not available.  Our daily returns are 

thus filtered to eliminate such invalid observations. 

Using the daily data for valid observations, calendar month and semiannual returns are 

computed by adding together the (log) daily returns.  The subsequent analysis uses these longer-

term returns, which also helps alleviate the effect of invalid daily observations.  In order to be 

included in the computations, a country must have at least ten valid monthly observation or 30 

valid observations within a semester.   

 

3.2. Summary statistics for return correlations. 

 Our focus is mainly on jumps, but we first report some results for raw returns; these will 

prove useful as a basis for comparison. 

Simple product moment correlations are computed for each pair of countries.  Summary 

statistics for the correlations are reported in Table 1, Panel A for monthly correlations and Panel 
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B for semiannual.  The number of observations depends on data availability.  The maximum 

number of months is 538, (e.g., Germany and the United Kingdom), and the minimum is eight, 

(e.g., Greece and Zimbabwe.)   Most pairs of countries have at least 100 concurrent monthly 

observations and quite a few have several hundred.  For semiannual periods, the maximum 

number is 90 and the minimum is eight.  Greece and Zimbabwe do not have enough concurrent 

semiannual observations to compute a correlation. 

As the table reveals, correlations are somewhat higher with semiannual than with 

monthly returns; both the mean and median are higher by about 0.12.   Cross-country-pair 

variation is only slightly higher for semiannual returns as indicated by the standard deviation and 

the mean absolute deviation while the number of highly significant correlations is lower; this is 

probably attributable to the lower sample sizes for semiannual data.  There is no evidence of 

skewness or kurtosis.   

Table 2 provides a list of the single most influential observation for the return correlation 

between each pair of countries.  To obtain these results, we simply computed the de-meaned 

product of returns that was the algebraically largest over all the available observations.  The table 

lists each influential period, the number of country pairs with data available for that period, and 

the fraction of country pairs for which that particular period was the most influential.  Periods are 

omitted if their influential observations amounted to less than one percent of the available 

correlations. 

Perhaps the most striking aspect of Table 2 is the pronounced dominance of October 

2008 for monthly data and the second semester of 2008 for semiannual data.  For 3,240 monthly 

correlation coefficients among the 82 countries, October 2008 was the single most influential 

observation in 2,457, more than 75% of the cases.  The second semester of 2008 was the most 

influential in 87.1% of the 3,240 semiannual correlations.  No other periods even come close.  

The next most influential monthly observation is October 1987, with 16.9% of the 378 

correlations available then.  The next most influential semester was the second half of 1993, a 

paltry 4.86% of the 1,378 available correlations. 

 
4. International jump correlation results. 

The basic approach of this section is to compute a jump statistic for each country and 

calendar period and then correlate the resulting jump statistics across countries.   
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4.1. The Barndorff-Nielsen and Shephard (2006) statistics. 

The Barndorff-Nielsen and Shephard (BNS) Gi,k and Hi,k statistics for country i in period 

k, are described in section 2.1 above.  For each period k, either a calendar month or a semester, 

Gi,k and Hi,k are computed from the daily return observations during the period. The results are 

available upon request.  

Recall from section 2.1 that the BNS measures are asymptotically unit normal under the 

null hypothesis of no jumps.  Our results reveal that every single estimate of G is negative on 

average and all of the computed T-statistics indicate significance, most being highly significant.  

If the underlying returns are independently distributed across time, Barndorff-Nielsen and 

Shephard show that their jump statistics are also time-series independent, so the T-statistics 

should be fairly reliable.   

An additional indication of jumps is that skewness and kurtosis are decidedly non-normal 

in almost all countries.  Skewness is negative for every country, which shows that some months 

during the sample have dramatically smaller values of the jump measure than could be expected 

under the null; (recall that negative values of G indicate jumps within the month.)   The 

uniformly large values of kurtosis reveal extreme value of G in some months, which is also 

shown by the very large minimum values of G in many cases.  In contrast, the maximum values 

of G never exceed 1.0. 

The semiannual G measure and the monthly and semiannual H measures yield similar 

though not identical results.6  Table 3 provides averages for the two BNS jump measures 

computed over both monthly and semiannual periods.7  The averages for the H measure, which is 

based on a ratio rather than a difference, are considerably smaller than the averages for the G 

measure.  But the H measures also have much less variability, so the significance levels are 

similar.  Measures based on semiannual observations are less significant because the sample 

sizes are smaller.  Despite these distinctions, all measures agree that the null hypothesis of no 

                                                 
6A full table for each measure will be provided to interested readers. 
7In these averages, measures that exceed 1,000 in absolute value are expunged because they are probably due to data 
errors.  For example, the January 1999 monthly G measure for Ghana is -202,343.  In the original data, the Ghanian 
price index changed only in the seventh significant digit every day in January until the last (typical successive values 
are 426.8350, 426.8352, and so on, up and down.)  Then, on the last day of January, the index shot up to 452.95.  In 
February, the index remained around 452.95 until the last day as well.  It seems likely that no trades occurred on 
most days in these months and the index changed only because of rounding error.   
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jumps should be rejected for almost all countries.  Only one jump statistic, the H measure for 

Romania with semiannual data, is positive out of the 4(82) = 328 measures computed. 

Since Tables 4 and 5 show clearly that jumps are happening all over the globe, the next 

step is to ascertain how correlated they are across countries.  To this end, using the calculated 

BNS measures G and H computed for both months and semesters within individual countries, we 

compute four international correlation matrices.  Table 4 provides summary statistics from these 

four different estimates of international jump correlations. 

The international correlations of jump measure reported in Table 4 stand in stark contrast 

with the return correlations reported earlier in Table 1.  The jump measures are simply not that 

correlated.  The mean correlation coefficients are only around 0.01 to 0.02.  Although the means 

are supposedly statistically significant based on the T-statistic for the mean, only a modest 

number of individual correlations have individual T’s greater than 2.0, between five and seven 

percent of them.  This differs dramatically from individual correlations among returns, which 

Table 1 reports have T’s exceeding 2.0 in 60% to 80% of the cases. 

This conclusion is further supported by Table 5, which gives influential months and 

semesters for the correlations among jump measures.  Unlike the influential periods for returns 

(Table 2), there are no grossly dominant periods.  The first semester of 1973 has the largest 

percentage of influential observations, but only 21.9%, in contrast with the 87.1% of influential 

observations exhibited by the second semester of 2008 for return correlations.  Moreover, there 

were many more available pairs during the second semester of 2008, 3,240, versus only 105 in 

the first semester of 1973, so the dominance of 2008 is all the more impressive.   

For monthly jump measures, Table 5 shows that only one month reaches even a ten 

percent level as being most influential; this is November 1978 with the H measure.   Notice also 

that the two most dominant months for returns, October 2008 and October 1987, do not even 

appear in Table 5.   

Combining the results in Tables 5, 6, and 7, one can only conclude that jumps are 

occurring in all countries but not usually at the same time.  Perhaps this is good news for 

investors because is seems to suggest that diversification can be effective in protecting against 

extreme movements in prices even though the smooth component of return variation is quite 

correlated internationally.  Evidently, jumps are much more idiosyncratic than normal variation. 
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Despite the weak international correlation among jumps, it could still be useful to 

examine special cases of countries that exhibit somewhat more jump co-movement.  Table 6 

presents a list of country pairs whose jump correlations have T-statistics exceeding 3.0 for both 

of the BNS measures.  Many of these seem intuitively plausible since they are close neighbors 

and trading partners; indeed, quite a few pairs are countries within the European community.    

There are some, however, that seem a bit odd, particularly for the jump measures 

computed with semiannual data.  Examples are Argentina, partnered with both Bangladesh and 

Kuwait, or China partnered with Jordan, or Brazil with Lithuania.  Perhaps some of these 

oddities are simply attributable to randomness that is the inevitable companion of large-scale 

data comparisons 

Other cases might very well be worthy of a more in-depth investigation.  For example, 

are semiannual jumps correlated between Indonesia and Morocco because their religious faith 

subjects them to occasional common shocks?  Are Israel and Switzerland paired through 

technology?  What is the relation between Kuwait and Romania, South Korea and Sweden, or 

Ecuador and the Philippines?   It would be interesting to know the underlying reasons for such 

connections, if indeed there are any. 

Most countries provide good diversification protection against extreme movements in 

prices.  But there are a few exceptions such as those listed in Table 6. 

 

 

4.2. The Lee and Mykland (2008) statistic. 

For each month having at least ten valid daily return observations, we first compute the 

average daily return over the available days, d, and also the bipower variation over the same days 

within the month.8   To achieve the proper scale factor for the numerator of the L statistic, we 

multiply the average daily return by ඥ2݀/π and then divide it by the bipower variation.  LM 

show that this L statistic is distributed as a standard normal when there are no jumps within the 

month.  When there are jumps, however, the L statistic has an amplified variance; the mean 

might be influenced as well but only if the jumps are biased above or below zero.  Since biased 

                                                 
8 LM recommend that the bipower variation be computed from earlier data, we see no compelling reason to do so 
because bipower variation is not affected by jumps, at least asymptotically.  Moreover, taking the return and the 
bipower estimator of instantaneous volatility from the same time period helps to alleviate serial dependence induced 
by persistence in the volatility process. 



15 
 

jumps seem unlikely, we focus now on the second and higher order moments of the resulting L 

statistic. 

Due to limited space, these results for each of our 82 countries are not reported but are 

available upon request.  The standard deviations are almost all larger than 1.0, which should be 

their value under the null hypothesis of no jumps.  The United States is the only exception.  To 

get a perspective on the significance of their differences from 1.0, a p-value of at least .01 would 

result if the observed sample standard deviation were above 1.29, 1.20, and 1.14 for sample sizes 

of 100, 200, and 500, respectively.  For the actual sample sizes, 79% of the countries have 

computed standard deviations that exceed 1.0 with a p-value of .05 and 62% exceed 1.0 with a p-

value of .01. 

Statistics related to the third and fourth moments, skewness and kurtosis, are also often 

non-normal, again supporting a conclusion that jumps occur in many countries.  Finally, the 

extrema are often very unlikely under a unit normal.  The maximum observed value exceeds 3.0 

for most countries and sometimes is truly enormous, such as 22.18 for Denmark or 200.1 for 

Ghana.  The minimum observed value is not quite as striking, but it is generally well below 2.5.9 

Overall, the Lee and Mykland statistic seems to indicate slightly fewer jumps than the 

Barndorff-Nielsen and Shephard statistic.  Both measures agree, nonetheless, that jumps are 

occurring all over.   

We now turn to the correlation in the LM jump measure across countries.  Since the LM 

measure’s numerator is a return, it should not be used directly because the results would be 

contaminated by the non-jump component.  Instead, we resort to a non-parametric approach.  

First, for each country separately, we classify months into those with likely jumps and those 

without.  Since the L statistic is asymptotically unit normal, we rather arbitrarily adopt a ten 

percent criterion for each tail; i.e., when a monthly value of |L| is above 1.65 relative to the mean, 

the month is classified as having a jump; all others are classified as non-jump months. 

After classifying each sample month as jump or non-jump for a every country, we then 

construct a 2X2 contingency table for each pair of countries, depicted below for countries i and j 

Ni,j is the number of months in column i and row j and their sum is N, the total number of months 

with concurrent observations for countries i and j.   

                                                 
9 The difference in maxima and minima could also be influenced by a positive mean return which to this point we 
have not expunged. 
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 Jump in j No jump in j
Jump in i N1,1 N2,1

No jump in i N1,2 N2,2
 

If there is no connection between the jumps that occur in countries i and j, then the 

“expected” number of months in the top left cell is E1,1 = (N1,1+N1,2)(N1,1+N2,1)/N, the product of 

the marginals, and so on for each of the other cells.  The Chi-square statistic is  
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which has two degrees of freedom.  Critical values rejecting the null hypothesis of no common 

jumps at the .05, .01, and .001 levels are, respectively, 5.99, 9.21, and 13.82.   

Table 7 reports summary statistics for the full matrix of Chi-square statistics.  The mean 

Chi-square value of 2.676 exceeds modestly its expected value of 2.0 under the null hypothesis 

(no international correlation of jumps.)  However, this excess is statistically significant provided 

that one believes that the entire ensemble of Chi-square values are independent of each other.  

The T-statistic for the difference between the global mean and 2.0 is 6.977 for the mean Chi-

square.   

There is also an indication in the last two columns of Table 7 that at least some countries 

have correlated jumps.  In 11.50% of the bi-country comparisons, the Chi-square statistic is 

significant with a p-value of .05.  For a p-value of .01, 6.534% of them are significant.  These 

percentages exceed, though only modestly, what one would expect under the null hypothesis of 

no dependence between any two countries. 

Table 8 gives country pairs that the LM measure indicates have the most interdependent 

jumps.  It lists all pairs for which the Chi-square statistic from the jump/non-jump contingency 

table exceeds the .0001 level, which is 18.42.  The computed Chi-square value is also given in 

the Table.  

Table 8 should be compared with Table 6, which has a list of significantly dependent 

jump countries based on the BNS statistics.  There are some differences.  Very few of the pairs in 

Table 8 involve less developed countries.  A significant majority involve countries in Europe 

with each other and with the U.S.  There only a few cases that feature non-geographic neighbors: 

Jamaica and Lebanon, Mexico and New Zealand, Nigeria and Taiwan.   
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We also looked at the sample months that had the largest absolute de-meaned L statistic 

for each country to ascertain whether such extreme events occurred simultaneously in a number 

of countries.  Only two months, January 1994 and December 2003, had the largest L statistic for 

four countries each.  Ten other months had two countries each with the largest L.  This is a total 

of 28 countries; hence, 82-28 = 54 countries had their largest L alone in a month that was not 

shared by any other country.  This suggests that the most extreme jumps are relatively isolated 

and idiosyncratic events. 

Overall, the LM jump measure is more or less in agreement with the BNS measure.  

There seems to be a small amount of cross-country dependence in jumps, but jumps are mainly 

idiosyncratic.  One is tempted to speculate on the minor differences between BNS and LM.  The 

results in Table 8 seem more intuitively plausible than some of those in Table 6.  Does this 

suggest that LM is more reliable?  Perhaps, but we are reluctant to take a more definite stand. 

 

4.3. The Jiang and Oomen (2008) Statistic. 

The log version of the Jiang and Oomen (2008) (hereafter JO), statistic is 
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where the superscripts “ar” and “ln” denote, respectively, the arithmetic return (Pt/Pt-1-1) and the 

log return ln(Pt/Pt-1) with Pt as the country index value at time t10 and σi is the standard deviation 

of the expression on the right-hand side, which we assume is a constant over all periods for 

country i.  JO prove that Ji,k is asymptotically unit normal under the null hypothesis of no jumps 

during period k. 

After computing the right-side expression for all available periods (months) for every pair 

of countries i and j, the time series correlations over k are computed between σiJi,k and σjJj,k.  

These correlations are clearly unaffected by the unknown parameters σi and σj provided that they 

are constants, so this enables us to avoid errors that might be introduced by their estimation. 

Table 9 provides summary statistics for the resulting correlations.  This is something of a 

surprise because it contrasts with the previously reported co-movement of jumps detected by the 

BNS and LM statistics; (compare Tables 6 and 10.)  For example, the BNS correlations reported 

                                                 
10The i and k subscripts on P are suppressed for ease of exposition.   
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in Table 4 display T-statistics in excess of 2.0 in around 6% of the cases, while Table 9 reports T-

statistics that exceed 2.0 in more than 39% of the cases.   The correlations base on the JO 

measure are also quite a bit larger on average, 0.134, and more statistically significant.  They are 

not as significant as correlations between returns but they are closer to returns than the jump 

correlations for the previous two measures. 

A further indication that the JO measure detects jumps differently is provided in Table 

10, which lists the most influential months according to JO.  Table 10 can be compared to Table 

2 for returns and Table 5 for the BNS jump measure.   The JO measure picks out a few of the 

same months as the BNS measure as being most influential: November 1978, and January 1991 

and 1994.  But it also identifies October 1987 as the most influential jump month of all and 

October 2008 as next most; these are months having the largest influence on return correlations.  

It thus seems that the JO measure of jumps portrays them as more systematic, though not to the 

same extent as returns, and less idiosyncratic as compared to the BNS and LM measures.  We are 

not sure why these measures differ in this respect.  Perhaps JO are correct in arguing that their 

measure is more sensitive to jumps, but further research is needed to reach a definite conclusion. 

Finally for the JO measure, Table 11 lists pairs of countries that are deemed to have the 

largest degree of jump correlation.  Since the JO correlations are large, for space we limited the 

list in this table to correlations with measure T-statistics of at least 9.0.  A striking feature of 

Table 11 is that every single country is developed.  According the JO measure of jumps, extreme 

international correlations do not happen for developing countries.  Also, many country pairs in 

Table 11 are European, as they were for the LM measure of extreme jump co-movements.  But 

Australia, Hong Kong, Japan and Singapore also appear. 

 

 

4.4. The Jacod and Todorov (2009) Statistics. 

The two JT statistics explained in section 2.1 above, Φ(J) for “joint” jumps and the Φ(D) 

for “disjoint” jumps are calculated for daily data within months when two countries have at least 

ten valid daily log returns.  This is repeated for each of the 3,321 pairs of countries.  When there 

are joint jumps, Φ(J) converges asymptotically to 1.0 in large samples.  When there are only 

disjoint jumps, Φ(D) converges to zero and Φ(J) converges to 2.0.  Critical levels for the two JT 

statistics are quite complex and depend on the sample size; for our sample size of approximately 
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21 trading days per month, Φ(D) > 0.5 rejects the null hypothesis of uniquely disjoint jumps while 

Φ(J) > 1.5 rejects the null hypothesis of joint jumps.11  

One difficulty in applying the JT test involves its assumption that there are indeed jumps, 

either joint or disjoint.  JT (2009) recommend using one of the other statistics such as BNS to 

first purge periods when no jumps occur; then the JT tests can be applied to the remaining 

periods.  We did not follow this recommendation here for the simple reason that jumps seem so 

ubiquitous according to the other statistics. 

Averaged over all months and country pairs, the mean value of Φ(J) is 2.324 and the t-

statistic is 207 relative to its asymptotic value of 1.0 (assuming independence across pairs.) 

Hence, on average, the JT Φ(J) statistic is a long and significant distance away from its 

asymptotic value of 1.0 when there are joint jumps.  However, only 56.9 percent of the country 

pairs reject the null hypothesis of joint jumps, which means that 43.1 percent do not.    

The mean value of Φ(D) is 0.352 with a t-statistic of 235, which rejects, on average, the 

hypothesis of uniquely disjoint jumps; but only 23.6 percent of the country pairs reject the 

proposition that there are uniquely disjoint jumps, which means that 72.4 percent do not. 

These results suggest that more than half of all country pairs have disjoint jumps and are 

thus strictly idiosyncratic.  In fewer than half of the country pairs, jumps are both joint and 

disjoint.  In other words, jumps are often disjoint but there is a non-negligible chance that joint 

jumps occur at least occasionally for some country pairs. 

In agreement with the other statistics, the JT tests suggest that international jumps are 

frequent.  They are strictly idiosyncratic in more than half the country pairs but they do occur 

jointly on occasion.  According to the JT tests, jumps are unique to a majority but not to all 

individual national markets.  This is essentially in agreement with the earlier results. 

There is also essential agreement with respect to both the most influential months in the 

sample on the JT statistics and on the pairs of countries that exhibit the largest average values.  

No month stands out as being overwhelmingly influential in terms of contributing to the largest 

values of Φ(D).  The single most prominent month is September 2008, but it was largest for only 

197 out of 3281 pairs of countries.  This was followed in order of prominence by October 1997, 

February 2007, and August 1991.   

                                                 
11 These critical values are supposed to be for a 5% significance level.  They are admittedly somewhat questionable 
so we shall subject them to simulation tests in section 5 below. 
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There are 45 pairs of countries whose average Φ(D) exceeds 0.6 and the majority (28) are 

European.  Greece alone figures in 18 pairs.    

 

5. The Efficacy of Jump Measures for Detecting Correlated Jumps. 

 In the preceding section, the four jump measures display some conflicting results.  

Among other issues, JO seems to detect more correlated jumps than BNS and LM while JT 

exhibits some rather non-intuitive behavior.  None of the four jump measures were designed 

originally for the purpose they are employed in this paper, to detect the extent of correlated 

jumps; consequently, they need not be equally adept in our application.  

To gain some insight about the underlying reasons for the empirical differences 

uncovered in section 4, we undertake in this section a set of simulations for which the true nature 

of correlated jumps are known between two hypothetical countries.  We generate artificial return 

data that has both a smooth Gaussian variation, including non-zero smooth correlation between 

the two bivariate return series, appended by artificial jumps of various sizes, frequencies, and co-

movement across the two hypothetical countries.   Using these artificial data, we study the 

efficacy of the four jump measures in detecting correlated jumps.12  

Without loss of generality, the bivariate smooth Gaussian process has mean zero and unit 

variance for both series plus a pre-specified correlation.  Since the average correlation in the 

monthly international return data is 0.314 (see Table 1, Panel A), we take this as an upper bound  

because it is also influenced by jumps and not just by smooth variation.  In the simulations, we 

use a value in this general neighborhood, 0.3, and also two smaller values, 0.15 and zero. 

The simulated jumps are also Gaussian with mean zero but their intensity is modeled by 

specifying their standard deviation as a multiple (such as 5 or 15) of the underlying smooth 

series, whose standard deviations are both 1.0.  Also, jumps arrive randomly with particular but 

rather small frequencies.  For example, with a daily frequency probability of .02 and 21 trading 

days per month, the probability of a jump occurring on some day during the month is .42.  The 

jump frequencies are studied over a range from very unlikely to very likely during each month.  

These frequencies are applied independently to both simulated return series.   

Conditional on a jump arriving in either series on a given day, there is also a specified co-

probability that the same jump will be transmitted to the other series.  This co-probability is a 

                                                 
12 We use the G variant of the BNS test and the Φ(D) for “disjoint” jumps variant of the JT test. 
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key parameter, because it specifies jump co-movement, the object of our study.  In the 

simulations, we allow it to vary from zero (no common jumps) to .999 (almost completely 

common jumps.)   Note that the two simulated series can also have common jumps during the 

same month simply because of random arrivals, even though the jumps are not really common.  

The co-probability simply increases their natural commonality. 

In summary, there are four parameters that vary across simulations: (1) smooth 

correlation, (2) jump intensity, (3) jump frequency, and (4) jump co-probability. Other 

parameters are held constant: the mean and volatility of the bivariate smooth returns, the type I 

error (5%), and the number of replications for each parameter combination (1,000).  The 5% type 

I error implies a different critical level for each of the jump measures, as was explained in 

sections 3 and 4.   We experimented with different replication numbers but they all deliver 

essentially the same results. 

Each simulation produces an entire probability distribution of the test statistic for 

correlated jumps, but these numbers are too voluminous to report in their entirety.  Instead, we 

report only a single indication of effectiveness, the test power.  When the jump co-probability is 

positive in the simulated returns, (and hence there are genuinely correlated jumps), the test power 

is the fraction of replications that reject the false null hypothesis of no jump co-movement.  In 

the special case when the co-probability is actually zero, and hence jumps are only randomly 

common in the two simulated return series, the test power is the fraction of replications that 

falsely reject the true null hypothesis of no jump co-movement. 

As a base case, we first look at the computed test power when the jump frequency is zero 

for both simulated return series.  Since jumps cannot occur, they cannot be common across the 

two series.  Nonetheless, we compute test power in this case, which is essentially the probability 

of falsely rejecting the true null hypothesis that there are no correlated jumps.  The results are 

plotted in Figure 1.   When the smooth variation correlation is zero, the BNS, LM, and JO tests 

provide appropriate results: i.e., at a 5% type I rejection level, they reject (wrongly) in the 

vicinity of five percent of the time.  The JT test never rejects wrongly; (it is plotted in Figure 1 

but has a value of zero and thus does not appear as a bar.) 

As the smooth correlation increases, going from zero in the left panel to .15 in the center 

panel and then to .30 in the right panel, the BNS and LM tests increase the incorrect rejection 

frequency slightly; they are behaving relatively well.  However, the JO test does not share this 
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desirable attribute; it incorrectly rejects about 40% of the time for the mid-range correlation of 

0.15 and almost 90% of the time at the high end, a correlation of 0.3.   Jiang and Oomen (JO) 

assert in their paper that their test is very sensitive to even small jumps.  Evidently, it is detecting 

“jumps” in even smooth Gaussian variation, at least in our application of their test where we first 

estimate the JO measure and then correlate the measures over time between the two simulated 

countries.  Even a seemingly small amount of smooth correlation seems to compromise the JO 

test, leading to an incorrect inference that there are common jumps.  There is correlation here, 

but not jump co-movement.  To retain the originality of the JO test, we do not use the simulation 

results to alter the critical values in the earlier empirical part of the paper.  This could have been 

done and probably should be done if the JO test is used in for a similar purpose in the future. 

The JT test never rejects wrongly, even five percent of the time; hence, it actually has too 

few rejections. 

With true co-movements in jumps, Table 12 reports some representative simulation 

results.  The table covers all four jump measures, BNS, LM, JO, and JT, and two values of the 

smooth variation correlation (zero and .15), two values of jump intensity, (5 and 15), two values 

of jump frequency (.01 and .03), and three values of the co-probability of jumps, (.3, .6, and .9.)   

We actually produced simulation results for a variety of other parameter values, but those in 

Table 12 provide a reasonable picture of the overall results.13 

First notice that BNS seems to provide reasonably reliable results overall.  Its test power 

is higher with more intense jumps and with a higher level of jump co-movement between the two 

simulated series.  This is what one would hope to obtain in a test procedure.  It is interesting 

though, that test power seems to be lower when jumps are more frequent.  At first, this might 

seem surprising but on further reflection, it seems sensible for the following reason: really 

frequent jumps are more or less akin to smooth variation but simply with a higher volatility.  The 

daily jump frequencies in Table 12 are .01 and .03, which imply monthly jump probabilities of at 

least .21 and .63, respectively.  With a monthly probability of around .6, it is highly likely that at 

least one of the two simulated return series will have a jump in a given month and this is 

transferred to the other series with the specified co-probability.  Evidently, the commonality that 

is easiest to detect, at least by the BNS method, involves rather rare jumps. 

                                                 
13 The complete set of results for all parameter values will be provided to interested readers. 
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In comparison to BNS, the LM test provides relatively weak power.  Indeed, for jump 

intensity five times the smooth variation volatility, the power is virtually negligible.  It improves 

for a jump intensity of 15, but mainly when the co-probability is quite high.  Even then, the best 

power rarely exceeds 50%.  To be fair though, we applied the LM test after having first utilized a 

non-parametric contingency table of its values; (see section 4.)  This non-parametric approach 

was adopted to avoid contamination by the smooth correlation, but it seems to have weakened 

power quite a bit.  Nonetheless, the LM approach seems to have the appropriate pattern; it simply 

requires highly intense and highly correlated jumps to have much power. 

The JO test has more power than the LM test at all levels of intensity, frequency, and co-

probability.  However, it seems to have less power than BNS throughout.  Moreover, unlike BNS 

and LM, it tends to detect jumps that do not exist (Figure 1.)   

The last panel of Table 12 reports the results for the JT test.  For the higher jump 

intensity of 15 and the highest co-probability of jump transmission (.9), the JT measure achieves 

100% power, the best of any of the four jump measures we examine in this paper.  However, for 

a lower intensity of 5, its power is negligible unless the co-probability is very high.  Also, unlike 

the other tests, JT does better when the jump frequency is higher, ceteris paribus. The power of 

the JT test is zero for lower co-probability, which may be worrying as the power should be at 

least equal to the size of the test.  We examined this curiosity by perturbing the critical values, 

thinking that they might be sensitive to small sample sizes, but the JT test statistic values in the 

simulations were so small that even much lower critical values failed to produce any differences. 

These results and comparisons are further illustrated in Figures 2-4.  Figure 2 shows test 

power for the four jump measures and high jump intensity across three levels of smooth 

correlation.  BNS has the highest power overall.   The test powers of BNS, LM and JO do not 

change much when the smooth correlation goes from zero to 0.3; (the latter value is in the same 

general vicinity as the average smooth correlation in the international index returns.)  However, 

JT’s power increases dramatically, from around 10% to over 70%.   In simulations, Jacod and 

Todorov (2009, section 6) also find that power is affected by the level of smooth correlation, 

though the effect appears to be less dramatic than in our application here. 

Figure 3 depicts the influence of jump intensity.  Again, BNS has good power 

throughout.  Its power exceeds 60% even at low levels of intensity (5) and it grows to 80% at an 

intensity of 10.   Both LM and JO exhibit strongly increasing power with growing intensity and 
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JO has the higher of these two at all levels but neither reaches the power of BNS.  JT’s power is 

outstanding and the best of all measures at higher jump intensities (10 and 15) but has only about 

10% power at an intensity of 5. 

Finally, Figure 4 plots the power for each of the four jump measures against jump 

frequency and jump co-movement probability.  BNS, LM and JO have the pattern one would 

expect, very low probability of incorrectly rejecting a true null hypothesis (when the co-

movement probability is zero) and increasing power against a false null hypothesis as the co-

movement probability increases from 0.3 through 0.999.  However, when there is truly some 

jump co-movement, BNS has higher power than LM and JO throughout; (the latter are similar.)  

Notice too that power is generally better for rare jumps, when the frequency is lower, for BNS, 

LM and JO.   The pattern for JT is quite different.  It has virtually no power until the co-

movement probability reaches 0.6 but it has the best power of all when this probability is .9 and 

above.  Another contrast is that JT’s power is (slightly) better for higher jump frequencies.  

The bottom line from these simulations turns out to be fairly clear-cut.  BNS, the 

Barndorff-Nielsen and Shephard jump measure, seems preferable overall for the explicit purpose 

we have here, estimating the co-movement of jumps across international markets.  It performs 

well when there are no correlated jumps and it has acceptable power when there are many such 

jumps.  Although the LM and JO measures display a similar pattern, they have weaker power 

when there are actually jumps.  Moreover, JO (but not LM) incorrectly indicates the presence of 

correlated jumps when there are actually none.  JT has outstanding power at very high levels of 

jump co-movement but performs poorly at lower levels.   

 

6.  A Simple Validity Check. 

 To this point, our basic inference from the empirical results is that jumps, though 

common in all countries, are mostly idiosyncratic and not very related across countries.  This 

suggests that any well-diversified portfolio should exhibit fewer jumps than any single country 

considered alone.14  This can be readily checked by constructing a globally diversified portfolio 

and estimating the prevalence of jumps by using one of the measures studied above.   Previously, 

Bollerslev, Law, and Tauchen (2008), using the BNS measure, and Lee and Mykland (2008) 

                                                 
14 We are grateful to Hanno Lustig for suggesting this idea. 
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document more frequent and larger sized jumps for the individual stocks as compared to an 

index.  

 We take the simplest possible approach by first constructing an equal-weighted global 

portfolio from the available daily returns of the 82 countries listed in Table 1.  Thus, the 

constructed index is a simple average of the countries already investigated and covers the same 

time period.  Since the previous section’s simulations suggested that the BNS jump measure has 

relatively sound properties, we adopt it for this validity check. 

 Table 13 presents the results.  The first panel is copied from Table 3 and simply provides 

summary statistics for individual countries.  The second panel reports on the BNS G jump 

measure for the global equal-weighted portfolio.  The difference is indeed striking and 

completely supports the notion that jumps are largely diversifiable.   Notice that the mean value 

of individual country BNS G measures is -6.799 while the equal-weighted index’ mean measure 

is only -0.276.  (Recall that large negative values of the BNS G measure reject the null 

hypothesis of no jumps.) 

 Other comparisons in Table 13 also support the same inference.   For example, the index 

has much smaller standard deviation across months, only 0.787 versus 15.19 for countries on 

average.  The minimum monthly value for the index is -9.527 as compared to -102.1 for 

countries.    

 Although the index displays much smaller jump measures, the average jump measure is 

still significantly negative.  The T-value for the sample mean is even larger than for individual 

countries, -8.127 versus -5.232.  This can be attributed to the index having more available 

observations than countries have on average and also to the much smaller variance of the index’ 

jump measure across months.  The bottom line here is that jumps are largely diversified away but 

not completely.  Evidently, country jumps are mostly, but not entirely, idiosyncratic. 

   

7. Conclusions. 

The extent of international correlation is very important for diversifying investors and 

government officials attempting to coordinate policies across borders.  In this paper, we examine 

daily data for broad equity indexes from 82 countries and adopt several competing jump 

measures suggested in previous papers.  
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Returns are quite correlated internationally.  Almost all the monthly return correlations 

are positive and almost 80% are statistically significant at the 1% level; this is for 3,321 

individual correlation coefficients computed with returns from 82 countries.  But jumps are less 

correlated.  For some of the jump measures, the correlation is very weak and is statistically 

significant in only a few pairs of countries.  This is true for the Barndorff-Nielsen and Shephard 

(BNS) (2006) jump statistic and the Lee and Mykland (LM) (2008) statistic.  The Jiang and 

Oomen (JO) (2009) statistic, however, produces higher average international jump correlations 

and more pairs of countries with statistically significant jump co-movements. 

Our simulations in section 5 partly explain this observed empirical pattern.  BNS 

performs very well in the sense that it does not indicate the presence of correlated jumps when 

there are actually none and it has good power to reject a false null hypothesis of no correlated 

jumps.  LM provides similar results, albeit with weaker power, perhaps because we employ a 

non-parametric variant of the statistic in this application.  JO detects correlated jumps when there 

are none in the simulated data, so we think it may overstate the presence and significance of 

jump co-movements.  JT performs well when jumps are quite highly correlated. 

In the paper, we also document two other interesting features of jumps: first, we display 

particular calendar periods that contribute the most to international jump correlations.  Perhaps 

surprisingly, these are not usually the same months that are most influential for return 

correlations, though again, there are some differences among the jump measures.  Second, we 

provide information on particular pairs of countries that are most influenced by extreme jumps.  

Another surprise is that most pairs involve the larger and more developed countries.  Jump co-

movement is uncommon among developing countries.  

We suggest some possibilities that explain these observed patterns in jumps but cannot at 

this point provide a complete explanation. This would require the identification of the various 

underlying causes of jumps.  At this point, the lack of international correlation among jumps 

suggests they are mostly caused by local influences such as political events and not by common 

global factors such as energy prices.   

In term of asset allocation, jumps are more correlated among European neighbors, which 

suggests that international diversification is less effective in that region.  
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Lastly, our approach can be readily adapted to ascertain whether jumps are entirely 

contemporaneous or whether they have a lead/lag relation on occasion.  This interesting issue is 

left for future research.  

The bottom line is a bit of good news for investors.  Although jumps are frequent in all 

countries and are probably hard to predict, they are not as correlated internationally as returns 

themselves.  Returns seem to be more driven by global systematic influences while jumps are 

somewhat more idiosyncratic.   
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Table 1 

Cross-country return correlations 

Product moment correlation coefficients are computed from dollar-denominated monthly and semiannual returns for all pairs of 82 
countries.  There are 3,321 pairs.  For monthly observations, 3,321 coefficients are computed but the Greece/Zimbabwe correlation is 
missing from the semiannual calculations.   The summary statistics below are computed across all the available coefficients.  Sigma is 
the cross-coefficient standard deviation.  T is the T-statistic assuming cross-coefficient independence (and hence may not be reliable.)   
MAD is the mean absolute deviation.  The last two columns give the percentage of all correlation coefficients whose individual T-
statistic exceeds 2.0 and 3.0, respectively.15  The data are extracted from DataStream, a division of Thomson Financial. 
 

Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum T > 2 T > 3 
Panel A. Monthly returns, 3,321 correlation coefficients 

0.314 0.313 0.191 94.7 0.153 0.302 0.006 0.935 -0.238 78.0% 63.9% 
Panel B. Semiannual returns, 3,320 correlation coefficients 

0.436 0.439 0.233 108. 0.188 -0.166 -0.157 0.989 -0.420 61.5% 27.8% 
 

  

                                                 
15 The individual correlation coefficient is assumed to have a standard error equal to 1/(Sample Size)1/2. 
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Table 2 

The most influential periods for inter-country return correlations 
 

An influential observation is defined here as the single calendar period that contributes the most to return correlations among each pair 
of countries.  Periods with less than one percent of the most influential observations are omitted for reasons of space.  The raw data are 
extracted from DataStream, a division of Thomson Financial. 
 

 
Number of 
Influential 

Observations 

Number of 
Available Country 

Pairs 

Percentage of 
Influential 

Observations 
  

Month/Year Monthly Returns 
January/1975 8 136 5.88% 
October/1987 64 378 16.9% 

December/1993 44 1431 3.07% 
January/1994 33 1485 2.22% 
August/1998 239 2628 9.09% 
January/2006 40 3240 1.23% 

September/2008 62 3240 1.91% 
October/2008 2457 3240 75.8% 
February/2009 34 3240 1.05% 

  
Semester/Year Semiannual Returns 

2/1985 3 253 1.19% 
1/1986 3 276 1.08% 
2/1993 67 1378 4.86% 
1/1994 23 1485 1.55% 
2/1997 76 2415 3.14% 
1/1998 36 2628 1.37% 
2/2006 38 3321 1.14% 
2/2008 2822 3240 87.1% 
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Table 3 
 

Country averages of summary statistics for the Barndorff-Nielsen/Shephard (2006) jump measures 
  

The jump measures described in Section 2.1 of the text are computed from daily observations within available calendar months and 
semiannual periods for each of 82 countries.  Summary statistics are computed from the resulting country time series of jump 
measures and are then averaged over countries.  N is the average sample size in months.  Sigma is the average time-series standard 
deviation.  T is the average T-statistic assuming time-series independence.  MAD is the average mean absolute deviation.  
Observations with absolute values greater than 1,000 are deleted.  Daily stock index data are extracted from DataStream, a division of 
Thomson Financial. 
 

N Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum
G Measure (Difference), Monthly 

252.1 -6.799 -0.994 15.19 -5.232 8.781 -5.177 47.16 0.364 -102.1 
H Measure (Ratio), Monthly 

253.3 -0.718 -0.222 2.416 -5.418 0.981 -2.369 15.43 0.482 -23.39 
G Measure (Difference), Semiannual 

42.9 -6.093 -2.518 10.976 -3.398 6.879 -2.261 7.512 0.110 -44.31 
H Measure (Ratio), Semiannual 

42.9 -0.755 -0.368 1.432 -3.743 0.828 -1.450 3.676 0.127 -6.282 
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Table 4 

Cross-country correlations of BNS jump measures 

Product moment correlation coefficients are computed across countries for the Barndorff-Nielsen and Shephard (2006) (BNS) jump 
measures based on squared variation versus bipower variation differences and ratios, the G and H measures, respectively.  G and H are 
calculated both monthly and semiannually.  There are 3,321 pairs of countries.  For monthly observations, 3,321 coefficients are 
computed but the Greece/Zimbabwe correlation is missing from the semiannual calculations.  The summary statistics below are 
computed across all the available correlation coefficients.  Sigma is the cross-coefficient standard deviation.  T is the T-statistic 
assuming cross-coefficient independence (and hence may not be reliable.)   MAD is the mean absolute deviation.  The last column 
gives the percentage of all correlation coefficients whose individual T-statistic exceeds 2.0.16  The data are extracted from DataStream, 
a division of Thomson Financial. 
 

Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum T > 2 
G Measure (Difference), Monthly 

0.0126 0.0009 0.0926 7.85 0.0681 0.996 3.455 0.598 -0.358 6.38% 
H Measure (Ratio), Monthly 

0.0164 0.0117 0.0924 10.21 0.0698 0.191 1.635 0.558 -0.413 6.17% 
G Measure (Difference), Semiannual 

0.0258 0.0049 0.2211 6.73 0.1693 0.534 0.979 0.884 -0.843 6.72% 
H Measure (Ratio), Semiannual 

0.0211 0.0131 0.2198 5.52 0.1702 0.212 0.708 0.847 -0.827 5.36% 
 
 
 

                                                 
16 The individual correlation coefficient is assumed to have a standard error equal to 1/(Sample Size)1/2. 
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Table 5 

Influential periods for inter-country correlations of jumps using the BNS measure 

An influential observation is defined here as the single calendar period that contributes the most 
to the correlation of jumps between countries.  The Barndorff-Nielsen and Shephard (2006) 
measures are calculated for each period and then correlated over time for all available pairs of 
countries.  For each listed period, the table contains the percentage of country pairs for which 
that period was the single most influential contributor to the estimated jump correlation.  To save 
space, periods are excluded if there are fewer than 100 available pairs of countries or have less 
than two percent of the most influential observations for both the G and H jump measures.  The 
raw data are extracted from DataStream, a division of Thomson Financial. 
 

 G Measure 
(Difference) 

H Measure 
(Ratio) 

  
Month/Year Monthly Jumps 

October/1973 3.810% 3.810% 
December/1974 2.500% 2.500% 

April/1975 2.941% 2.206% 
November/1978 8.824% 11.77% 

May/1980 2.632% 3.684% 
February/1983 4.211% 2.632% 

November/1983 6.667% 4.286% 
January/1991 6.554% 4.546% 
January/1994 2.155% 2.492% 
March/2009 2.161% 2.006% 

  
Semester/Year Semiannual Jumps 

1/1973 21.91% 21.91% 
1/1974 7.500% 5.833% 
1/1988 7.308% 6.417% 
1/1991 11.11% 10.82% 
1/1994 6.061% 5.724% 
2/2000 6.524% 7.563% 
1/2002 7.359% 6.760% 
1/2006 7.377% 7.136% 
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Table 6 

Country pairs with large jump correlations according to the BNS measure 

The Barndorff-Nielsen and Shephard (2006) measures are calculated for each period and then 
correlated over time for all available pairs of countries.  The pairs of countries listed here exhibit 
jump measure correlations with T-statistics of at least 3.0 for both the G and H measures.  The 
raw data are extracted from DataStream, a division of Thomson Financial. 
 

Monthly Jumps Semiannual Jumps 
Belgium France  Argentina Bangladesh 
Belgium Ireland  Argentina Kuwait 
Belgium Netherlands  Austria Spain 
Belgium Switzerland  Bangladesh Kuwait 
Brazil Lithuania  Belgium Netherlands 
Canada Sweden  Belgium Switzerland 
Estonia Israel  Canada Sweden 
Finland Romania  Chile India 
France Germany  China Czech Republic 
France Hungary  China Jordan 
France Italy  Czech Republic Jordan 
France Netherlands  Denmark Nigeria 
France United Kingdom  Denmark Sweden 
Germany Hungary  Ecuador Philippines 
Germany Italy  Finland Ukraine 
Germany Netherlands  France Portugal 
Hong Kong Norway  Germany Netherlands 
Hungary Norway  Germany Switzerland 
Israel Switzerland  Ghana Luxembourg 
Kenya Oman  Ghana Mauritius 
Netherlands Poland  Hungary Poland 
Netherlands Switzerland  Hungary Spain 
Netherlands United Kingdom  Indonesia Morocco 
Portugal Switzerland  Kenya Oman 
Romania Sweden  Kuwait Oman 
Slovenia Tunisia  Kuwait Romania 
South Korea Sweden  Kuwait Sweden 
   Malta Nigeria 
   Netherlands Switzerland 
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Table 7 
 

Cross-country dependence of LM jump measures 
 

Chi-square statistics with two degrees of freedom are computed from two-by-two contingency tables tabulated for the Lee and 
Mykland (2008) (LM) jump measure, L.  For each of 82 countries, the LM L statistic is computed from daily data for each calendar 
month and then the month is classified as a jump month if the absolute value of the L statistic exceeds the 10% level for a unit normal 
(1.65).  Otherwise, the month is classified as a non-jump month.  For each pair of countries, the contingency table is based on the 
jump/non-jump cross-classification.  There are 3,321 pairs of countries.  The summary statistics below are computed across all the 
available contingency table Chi-square statistics.  Under the null hypothesis of no cross-country dependence in jumps, the Chi-square 
statistic has an expected value of 2.0.  Sigma is the standard deviation.  T is the T-statistic against the null expected mean of 2.0 
assuming independence across the contingency tables.  MAD is the mean absolute deviation.  The last two columns give the 
percentage of all Chi-square values that are significant at the .05 and .01 levels respectively.  The data are extracted from DataStream, 
a division of Thomson Financial. 
 

Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum p = .05 p = .01 
2.676 0.852 5.585 6.977 2.967 5.551 45.53 87.78 0.000 11.50 6.534 
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Table 8 
Country pairs with large jump co-dependence according to the LM measure 

 
Chi-square statistics with two degrees of freedom are computed from two-by-two contingency 
tables tabulated for the Lee and Mykland (2008) (LM) jump measure, L.  For each of 82 
countries, the LM L statistic is computed from daily data for each calendar month and then the 
month is classified as a jump month if the absolute value of the L statistic exceeds the 10% level 
for a unit normal (1.65).  Otherwise, the month is classified as a non-jump month.  For each pair 
of countries, the contingency table is based on the jump/non-jump cross-classification.  There are 
3,321 pairs of countries.  The country pairs below have contingency table Chi-square values in 
excess of the .0001 significance level under the null hypothesis of no common jumps.  The 
computed Chi-square value is in the right-most column.  The raw data are extracted from 
DataStream, a division of Thomson Financial. 
 

Australia Canada 21.02 
Australia New Zealand 29.24 
Australia Singapore 18.66 
Austria Belgium 46.04 
Austria France 22.79 
Austria Luxembourg 22.17 
Austria Switzerland 41.28 
Belgium France 43.21 
Belgium Germany 27.23 
Belgium Ireland 48.33 
Belgium Italy 24.86 
Belgium Netherlands 48.81 
Belgium Norway 18.76 
Belgium Spain 24.07 
Belgium Switzerland 52.99 
Canada United Kingdom 19.28 

Denmark France 21.16 
Denmark Portugal 24.06 
Denmark United Kingdom 20.00 
Finland Ireland 22.70 
Finland Netherlands 18.89 
Finland Sweden 24.99 
Finland Switzerland 24.08 
France Germany 47.47 
France Ireland 47.84 
France Italy 23.11 
France Netherlands 39.91 
France Portugal 31.53 
France Spain 20.26 
France Switzerland 36.52 
France United Kingdom 29.17 
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Germany Ireland 33.84 
Germany Israel 21.79 
Germany Italy 27.23 
Germany Netherlands 62.87 
Germany New Zealand 21.29 
Germany Sweden 18.63 
Germany Switzerland 37.18 
Germany United States 26.30 
Greece Netherlands 20.89 
Greece Singapore 20.35 

Hungary Poland 24.19 
Ireland Italy 25.21 
Ireland Netherlands 62.19 
Ireland Norway 39.87 
Ireland Spain 25.74 
Ireland Sweden 36.37 
Ireland Switzerland 24.19 
Ireland United Kingdom 87.78 
Italy Netherlands 33.87 
Italy Portugal 22.30 
Italy Sweden 22.58 
Italy United Kingdom 20.62 

Jamaica Lebanon 19.21 
Malaysia Singapore 51.06 
Mexico New Zealand 21.21 

Netherlands Norway 20.25 
Netherlands Spain 27.02 
Netherlands Sweden 23.54 
Netherlands Switzerland 50.73 
Netherlands United Kingdom 52.06 
Netherlands United States 44.44 

New Zealand Sweden 21.27 
Nigeria Taiwan 22.26 
Norway Spain 27.91 
Norway Sweden 22.79 
Norway United Kingdom 19.72 
Portugal Spain 24.88 
Portugal Switzerland 19.49 

Spain Switzerland 22.08 
Sweden Switzerland 38.63 
Sweden United Kingdom 21.07 
Sweden United States 24.42 

Switzerland United Kingdom 21.77 
Switzerland United States 26.30 

United Kingdom United States 44.61 
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Table 9 
 

Cross-country correlations of JO jump measures 

Product moment correlation coefficients are computed across countries for the Jiang and Oomen (2008) log version of the “swap 
variation” jump measure computed monthly from daily observations within the month.  There are 3,321 pairs of countries.  The 
summary statistics below are computed across all the correlation coefficients.  Sigma is the cross-coefficient standard deviation.  T is 
the T-statistic assuming cross-coefficient independence (and hence may not be reliable.)   MAD is the mean absolute deviation.  The 
last column gives the percentage of all correlation coefficients whose individual T-statistic exceeds 2.0.17  The data are extracted from 
DataStream, a division of Thomson Financial. 
 

Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum T > 2 
0.134 0.116 0.143 54.1 0.112 0.616 0.689 0.712 -0.491 39.14 

                                                 
17 The individual correlation coefficient is assumed to have a standard error equal to 1/(Sample Size)1/2. 
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Table 10 

Influential periods for inter-country correlations of jumps using the JO measure 

An influential observation is defined here as the single calendar period that contributes the most 
to the correlation of jumps between countries.  The Jiang and Oomen (2008) measure is 
calculated for each month and then correlated over time for all pairs of countries.  For each listed 
month, the table contains the percentage of country pairs for which that period was the single 
most influential contributor to the estimated jump correlation.  To save space, periods are 
excluded if there are fewer than 100 available pairs of countries or have less than two percent of 
the most influential observations.  The raw data are extracted from DataStream, a division of 
Thomson Financial. 

  
November/1973 2.857 

January/1975 2.206 
November/1978 2.206 

March/1980 3.158 
October/1987 55.03 
October/1988 4.100 
October/1989 5.397 
January/1991 2.643 
August/1991 5.990 
January/1994 3.838 
October/1997 6.832 
August/1998 8.562 

September/2001 3.520 
October/2008 13.89 

November/2008 2.284 
May/2009 2.191 
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Table 11 

Country pairs with extremely large jump correlations according to the JO measure 

The Jiang and Oomen (2008) measures are calculated for each month and then correlated over 
month for all pairs of countries.  The pairs here exhibit JO jump measure correlations with T-
statistics of at least 9.0.  Computed jump correlations are in the right-most column.  The raw data 
are extracted from DataStream, a division of Thomson Financial. 
 

Australia Ireland 0.473 
Australia New Zealand 0.586 
Australia Norway 0.565 
Australia Singapore 0.484 
Australia Switzerland 0.453 
Australia United Kingdom 0.525 
Austria Belgium 0.458 
Austria France 0.463 
Austria Germany 0.533 
Austria Netherlands 0.480 
Austria Switzerland 0.475 
Belgium France 0.507 
Belgium Germany 0.521 
Belgium Ireland 0.477 
Belgium Netherlands 0.630 
Belgium Norway 0.507 
Belgium Switzerland 0.585 
Belgium United Kingdom 0.481 
France Germany 0.624 
France Italy 0.478 
France Netherlands 0.582 
France Norway 0.485 
France Switzerland 0.563 
France United Kingdom 0.469 

Germany Italy 0.461 
Germany Netherlands 0.629 
Germany Norway 0.501 
Germany Switzerland 0.617 

Hong Kong Singapore 0.658 
Ireland Netherlands 0.458 
Ireland Singapore 0.437 
Ireland Switzerland 0.446 
Ireland United Kingdom 0.572 
Japan Netherlands 0.446 

Netherlands Norway 0.577 
Netherlands Switzerland 0.589 
Netherlands United Kingdom 0.498 
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Norway Singapore 0.491 
Norway Switzerland 0.567 
Norway United Kingdom 0.567 
Portugal Spain 0.581 

Singapore Switzerland 0.455 
Singapore United Kingdom 0.502 

Switzerland United Kingdom 0.503 
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Table 12 
 

Selected results from simulations to check the power of four different jump measures for 
detecting correlated jumps. 

 
The jump measures are those derived by Barndorff-Nielsen and Shephard [2006] (BNS), Lee and 
Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and Jacod and Todorov [2009] (JT).  
Simulated bivariate returns have two components, a smooth Gaussian variation with unit 
variance (for both bivariate returns) and a specified smooth correlation plus a Gaussian jump 
component with specified frequency, intensity, and co-movement probability, “Co-Prob.”  Jump 
intensity is in multiple units of the smooth variation volatility. 
 

Smooth correlation = 0. Smooth Correlation = 0.15 
Jump 

Intensity 
Jump 

Frequency 
Jump 

Co-Prob 
Test 

Power
Jump 

Intensity
Jump 

Frequency
Jump 

Co-Prob 
Test 

Power
BNS 

5 0.01 0.3 27.9 5 0.01 0.3 29.6 
5 0.03 0.3 26.6 5 0.03 0.3 26.1 
5 0.01 0.6 52.4 5 0.01 0.6 55.1 
5 0.03 0.6 43.5 5 0.03 0.6 42.8 
5 0.01 0.9 65.9 5 0.01 0.9 69.5 
5 0.03 0.9 57.2 5 0.03 0.9 52.8 
15 0.01 0.3 44.9 15 0.01 0.3 43.9 
15 0.03 0.3 29.1 15 0.03 0.3 29.7 
15 0.01 0.6 76.1 15 0.01 0.6 77.9 
15 0.03 0.6 49.7 15 0.03 0.6 47.8 
15 0.01 0.9 89.9 15 0.01 0.9 90.0 
15 0.03 0.9 74.1 15 0.03 0.9 73.2 

LM 
5 0.01 0.3 1.5 5 0.01 0.3 2.9 
5 0.03 0.3 1.2 5 0.03 0.3 3.0 
5 0.01 0.6 1.9 5 0.01 0.6 2.6 
5 0.03 0.6 2.8 5 0.03 0.6 2.8 
5 0.01 0.9 2.6 5 0.01 0.9 3.5 
5 0.03 0.9 2.8 5 0.03 0.9 2.8 
15 0.01 0.3 9.4 15 0.01 0.3 12.3 
15 0.03 0.3 5.9 15 0.03 0.3 6.6 
15 0.01 0.6 30.0 15 0.01 0.6 33.8 
15 0.03 0.6 28.6 15 0.03 0.6 16.7 
15 0.01 0.9 55.0 15 0.01 0.9 58.3 
15 0.03 0.9 33.4 15 0.03 0.9 36.1 

JO 
5 0.01 0.3 19.7 5 0.01 0.3 22.9 
5 0.03 0.3 19.4 5 0.03 0.3 19.7 
5 0.01 0.6 25.6 5 0.01 0.6 28.4 
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5 0.03 0.6 26.0 5 0.03 0.6 26.2 
5 0.01 0.9 34.6 5 0.01 0.9 36.4 
5 0.03 0.9 28.0 5 0.03 0.9 28.8 
15 0.01 0.3 33.4 15 0.01 0.3 33.6 
15 0.03 0.3 26.0 15 0.03 0.3 28.9 
15 0.01 0.6 49.3 15 0.01 0.6 50.4 
15 0.03 0.6 51.4 15 0.03 0.6 51.9 
15 0.01 0.9 66.6 15 0.01 0.9 66.3 
15 0.03 0.9 62.5 15 0.03 0.9 61.3 

JT 
5 0.01 0.3 0.0 5 0.01 0.3 0.0 
5 0.03 0.3 0.0 5 0.03 0.3 0.0 
5 0.01 0.6 0.0 5 0.01 0.6 0.0 
5 0.03 0.6 0.0 5 0.03 0.6 0.0 
5 0.01 0.9 0.0 5 0.01 0.9 0.0 
5 0.03 0.9 41.9 5 0.03 0.9 54.9 
15 0.01 0.3 0.0 15 0.01 0.3 0.0 
15 0.03 0.3 0.0 15 0.03 0.3 0.0 
15 0.01 0.6 0.2 15 0.01 0.6 1.0 
15 0.03 0.6 45.1 15 0.03 0.6 44.1 
15 0.01 0.9 44.9 15 0.01 0.9 60.7 
15 0.03 0.9 100.0 15 0.03 0.9 100.0 
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Table 13 
 

Barndorff-Nielsen/Shephard (2006) G jump measures, Country Averages vs. Equal-Weighted Global Index 
  

The jump measures described in Section 2.1 of the text are computed from daily observations within available calendar month for 
each of 82 countries and also for an equal-weighted index of all countries.  Summary statistics are computed from the resulting time 
series of jump measures.  N is the average sample size in months for individual countries and the number of months for the equal-
weighted index.  Sigma is the average time-series standard deviation.  T is the average T-statistic assuming time-series independence.  
MAD is the average mean absolute deviation.  Observations with absolute values greater than 1,000 are deleted.  Daily stock index 
data are extracted from DataStream, a division of Thomson Financial. 
 

N Mean Median Sigma T MAD Skewness Kurtosis Maximum Minimum
G Measure (Difference), Monthly, Individual Countries (from Table 3) 

252.1 -6.799 -0.994 15.19 -5.232 8.781 -5.177 47.16 0.364 -102.1 
G Measure (Difference), Monthly, Equal-Weighted Global Index 

538 -0.276 -0.0895 0.787 -8.127 0.416 -5.815 49.82 0.411 -9.527 
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Figure 1 

The probability of rejecting a true null hypothesis that there are no jumps in either of two 
simulated return series.  The two return series both have a smooth unit Gaussian variation and a 
specified level of correlation.  The underlying jump measures are those derived by Barndorff-
Nielsen and Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] 
(JO), and Jacod and Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 
1,000 replications. 
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Figure 2 

Smooth Correlation and Test Power Against a False Null Hypothesis of No Jump Co-Movement 
for Jump Intensity = 15, Jump Frequency = .02, and Jump Co-Probability = 0.9.  The two return 
series both have a smooth unit Gaussian variation and a specified level of correlation.  The 
underlying jump measures are those derived by Barndorff-Nielsen and Shephard [2006] (BNS), 
Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and Jacod and Todorov [2009] 
(JT).  The type I rejection level is 5%.  Simulations have 1,000 replications. 
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Figure 3 

Jump Intensity and Test Power Against a False Null Hypothesis of No Jump Co-Movement for 
Smooth Correlation = 0.15, Jump Frequency = .02, and Jump Co-Probability = 0.9.  The two 
return series both have a smooth unit Gaussian variation and the specified level of correlation 
(0.15).  The underlying jump measures are those derived by Barndorff-Nielsen and Shephard 
[2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and Jacod and 
Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 1,000 replications. 
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Figure 4 

Jump Frequency, Co-Movement Probability and Test Power against a Null Hypothesis of No Jump Co-Movement for Smooth 
Correlation = 0.15 and Jump Intensity = 15.  For a Co-Movement Probability of zero, the Null Hypothesis is true; otherwise, it is false. 
The two return series both have a smooth unit Gaussian variation and a specified level of correlation.  The underlying jump measures 
are those derived by Barndorff-Nielsen and Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), 
and Jacod and Todorov [2009] (JT).  The type I rejection level is 5%.  Simulations have 1,000 replications. 
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Appendix   
 

Country Index Sample Periods and Index Identification 
 
Eighty-Two countries have index data availability from DataStream, a division of Thomson Financial.  Some countries have several 
indexes and the index chosen has the longest period of data availability.  All index values are converted into a common currency, the 
US dollar.  An index with the designation “RI” is a total return index (with reinvested dividends.)  The designation “PI” denotes a pure 
price index.  When calculating log returns from the indexes, neither the beginning nor the ending index value can be identical to its 
immediately preceding index value; (this eliminates holidays, which vary across countries, and days with obviously stale prices.) 

 

Country DataStream Availability Index Identification DataStream 
Mnemonic Begins Ends 

Argentina 2-Aug-93 26-Oct-09 ARGENTINA MERVAL   ARGMERV(PI)~U$ 
Australia 1-Jan-73 26-Oct-09 AUSTRALIA-DS MARKET  TOTMAU$(RI) 
Austria 1-Jan-73 26-Oct-09 AUSTRIA-DS Market   TOTMKOE(RI)~U$ 
Bahrain 31-Dec-99 26-Oct-09 DOW JONES BAHRAIN  DJBAHR$(PI) 
Bangladesh 1-Jan-90 26-Oct-09 BANGLADESH SE ALL SHARE   BDTALSH(PI)~U$ 
Belgium 1-Jan-73 26-Oct-09 BELGIUM-DS Market   TOTMKBG(RI)~U$ 
Botswana 29-Dec-95 26-Oct-09 S&P/IFCF M BOTSWA0.   IFFMBOL(PI)~U$ 
Brazil 7-Apr-83 26-Oct-09 BRAZIL BOVESPA   BRBOVES(PI)~U$ 
Bulgaria 20-Oct-00 26-Oct-09 BSE SOFIX   BSSOFIX(PI)~U$ 
Canada 31-Dec-64 26-Oct-09 S&P/TSX COMPOSITE INDEX   TTOCOMP(RI)~U$ 
Chile 2-Jan-87 26-Oct-09 CHILE GENERAL (IGPA)   IGPAGEN(PI)~U$ 
China 3-Apr-91 26-Oct-09 SHENZHEN SE COMPOSITE  CHZCOMP(PI)~U$ 
Colombia 10-Mar-92 26-Oct-09 COLOMBIA-DS Market  TOTMKCB(RI)~U$ 
Côte d'Ivoire 29-Dec-95 26-Oct-09 S&P/IFCF M COTE D'IVOIRE   IFFMCIL(RI)~U$ 
Croatia 2-Jan-97 26-Oct-09 CROATIA CROBEX  CTCROBE(PI)~U$ 
Cyprus 3-Sep-04 26-Oct-09 CYPRUS GENERAL  CYPMAPM(PI)~U$ 
Czech Republic 9-Nov-93 26-Oct-09 CZECH REP.-DS NON-FINCIAL   TOTLICZ(RI)~U$ 
Denmark 31-Dec-69 26-Oct-09 MSCI DENMARK   MSDNMKL(RI)~U$ 
Ecuador 2-Aug-93 26-Oct-09 ECUADOR ECU (U$)  ECUECUI(PI) 
Egypt 2-Jan-95 26-Oct-09 EGYPT HERMES FINANCIAL   EGHFINC(PI)~U$ 
Estonia 3-Jun-96 26-Oct-09 OMX TALLINN (OMXT)   ESTALSE(PI)~U$ 
Finland 2-Jan-91 26-Oct-09 OMX HELSINKI (OMXH)   HEXINDX(RI)~U$ 
France 1-Jan-73 26-Oct-09 FRANCE-DS Market   TOTMKFR(RI)~U$ 
Germany 31-Dec-64 26-Oct-09 DAX 30 PERFORMANCE   DAXINDX(RI)~U$ 
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Ghana 29-Dec-95 26-Oct-09 S&P/IFCF M GHA0.   IFFMGHL(PI)~U$ 
Greece 26-Jan-06 26-Oct-09 ATHEX COMPOSITE   GRAGENL(RI)~U$ 
Hong Kong 2-Jan-90 26-Oct-09 HANG SENG   HNGKNGI(RI)~U$ 
Hungary 2-Jan-91 26-Oct-09 BUDAPEST (BUX)  BUXINDX(PI)~U$ 
Iceland 31-Dec-92 26-Oct-09 OMX ICELAND ALLSHARE   ICEXALL(PI)~U$ 
India 2-Jan-87 26-Oct-09 INDIA BSE (100) NATIONAL   IBOMBSE(PI)~U$ 
Indonesia 2-Apr-90 26-Oct-09 INDONESIA-DS Market  TOTMKID(RI)~U$ 
Ireland 1-Jan-73 26-Oct-09 IRELAND-DS MARKET  TOTMIR$(RI) 
Israel 23-Apr-87 26-Oct-09 ISRAEL TA 100   ISTA100(PI)~U$ 
Italy 1-Jan-73 26-Oct-09 ITALY-DS MARKET  TOTMIT$(RI) 
Jamaica 29-Dec-95 26-Oct-09 S&P/IFCF M JAMAICA   IFFMJAL(PI)~U$ 
Japan 1-Jan-73 26-Oct-09 TOPIX   TOKYOSE(RI)~U$ 
Jordan 21-Nov-88 26-Oct-09 AMMAN SE FINANCIAL MARKET   AMMANFM(PI)~U$ 
Kenya 11-Jan-90 26-Oct-09 KENYA NAIROBI SE   NSEINDX(PI)~U$ 
Kuwait 28-Dec-94 26-Oct-09 KUWAIT KIC GENERAL   KWKICGN(PI)~U$ 
Latvia 3-Jan-00 26-Oct-09 OMX RIGA (OMXR)   RIGSEIN(RI)~U$ 
Lebanon 31-Jan-00 26-Oct-09 S&P/IFCF M LEBANON   IFFMLEL(PI)~U$ 
Lithuania 31-Dec-99 26-Oct-09 OMX VILNIUS (OMXV)   LNVILSE(RI)~U$ 
Luxembourg 2-Jan-92 26-Oct-09 LUXEMBURG-DS MARKET   LXTOTMK(RI)~U$ 
Malaysia 2-Jan-80 26-Oct-09 KLCI COMPOSITE  KLPCOMP(PI)~U$ 
Malta 27-Dec-95 26-Oct-09 MALTA SE MSE -  MALTAIX(PI)~U$ 
Mauritius 29-Dec-95 26-Oct-09 S&P/IFCF M MAURITIUS   IFFMMAL(PI)~U$ 
Mexico 4-Jan-88 26-Oct-09 MEXICO IPC (BOLSA)   MXIPC35(PI)~U$ 
Morocco 31-Dec-87 26-Oct-09 MOROCCO SE CFG25   MDCFG25(PI)~U$ 
Namibia 31-Jan-00 26-Oct-09 S&P/IFCF M NAMBIA   IFFMNAL(PI)~U$ 
Netherlands 1-Jan-73 26-Oct-09 NETHERLAND-DS Market   TOTMKNL(RI)~U$ 
New Zealand 4-Jan-88 26-Oct-09 NEW ZEALAND-DS MARKET  TOTMNZ$(RI) 
Nigeria 30-June-95 26-Oct-09 S&P/IFCG D NIGERIA   IFGDNGL(PI)~U$ 
Norway 2-Jan-80 26-Oct-09 NORWAY-DS MARKET  TOTMNW$(RI) 
Oman 22-Oct-96 26-Oct-09 OMAN MUSCAT SECURITIES MKT.   OMANMSM(PI)~U$ 
Pakistan 30-Dec-88 26-Oct-09 KARACHI SE 100  PKSE100(PI)~U$ 
Peru 2-Jan-91 26-Oct-09 LIMA SE GENERAL(IGBL)   PEGENRL(PI)~U$ 
Philippines 2-Jan-86 26-Oct-09 PHILIPPINE SE I(PSEi)   PSECOMP(PI)~U$ 
Poland 16-Apr-91 26-Oct-09 WARSAW GENERALINDEX   POLWIGI(PI)~U$ 
Portugal 5-Jan-88 26-Oct-09 PORTUGAL PSI GENERAL   POPSIGN(PI)~U$ 
Romania 19-Sep-97 26-Oct-09 ROMANIA BET (L)   RMBETRL(PI)~U$ 
Russia 1-Sep-95 26-Oct-09 RUSSIA RTS INDEX   RSRTSIN(PI)~U$ 
Saudi Arabia 31-Dec-97 26-Oct-09 S&P/IFCG D SAUDI ARABIA  IFGDSB$(RI) 
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Singapore 1-Jan-73 26-Oct-09 SINGAPORE-DS MARKET EX TMT TOTXTSG(RI)~U$ 
Slovakia 14-Sep-93 26-Oct-09 SLOVAKIA SAX 16   SXSAX16(PI)~U$ 
Slovenia 31-Dec-93 26-Oct-09 SLOVENIAN EXCH. STOCK (SBI)   SLOESBI(PI)~U$ 
South Africa 1-Jan-73 26-Oct-09 SOUTH AFRICA-DS MARKET  TOTMSA$(RI) 
South Korea 31-Dec-74 26-Oct-09 KOREA SE COMPOSITE (KOSPI)   KORCOMP(PI)~U$ 
Spain 2-Jan-74 26-Oct-09 MADRID SE GENERAL   MADRIDI(PI)~U$ 
Sri Lanka 2-Jan-85 26-Oct-09 COLOMBO SE ALLSHARE   SRALLSH(PI)~U$ 
Sweden 28-Dec-79 26-Oct-09 OMX STOCKHOLM (OMXS)   SWSEALI(PI)~U$ 
Switzerland 1-Jan-73 26-Oct-09 SWITZ-DS Market   TOTMKSW(RI)~U$ 
Taiwan 31-Dec-84 26-Oct-09 TAIWAN SE WEIGHTED   TAIWGHT(PI)~U$ 
Thailand 2-Jan-87 26-Oct-09 THAILAND-DS MARKET TOTMTH$(RI) 
Trinidad 29-Dec-95 26-Oct-09 S&P/IFCF M TRINIDAD & TOBAGO   IFFMTTL(PI)~U$ 
Tunisia 31-Dec-97 26-Oct-09 TUNISIA TUNINDEX   TUTUNIN(PI)~U$ 
Turkey 4-Jan-88 26-Oct-09 ISE TIOL 100   TRKISTB(PI)~U$ 
Ukraine 30-Jan-98 26-Oct-09 S&P/IFCF M UKRAINE   IFFMURL(PI)~U$ 
Utd. Arab Emirates 1-Jun-05 26-Oct-09 MSCI UAE  MSUAEI$ 
United Kingdom 1-Jan-65 26-Oct-09 UK-DS MARKET  TOTMUK$(RI) 
United States 4-Jan-68 26-Oct-09 S&P 500 COMPOSITE   S&PCOMP(RI)~U$ 
Venezuela 2-Jan-90 26-Oct-09 VENEZUELA-DS MARKET  TOTMVE$(RI) 
Zimbabwe 6-Apr-88 6-Oct-06 ZIMBABWE INDUSTRIALS ZIMINDS(PI) 
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